C
x–NOTES–
3 - 62Table 3-50 Entering Drive Enable Logic Control ParameterCP Parameter Name Parameter ValueCP-10 Alarm 1 Format CP-11 Alarm 2 FormatCP-74 Drive E
3 - 63MONITOR PARAMETERSParameters are divided into two classifications; Control Parameters (CP) and MonitorParameters (MP). The numbered code that r
3 - 64Input MonitoringThese MPs monitor the MLP–Drive's inputs.MP-41 LEAD FREQUENCYThe Lead Frequency (MP-41) displays the frequency of the L
3 - 65MP-54 LOGIC INPUTS - GROUP AThe Logic Inputs A displays the status of the Run, Jog, R–Stop and F–Stop digitalinputs. The number “1” indicat
3 - 66MP-87 A/D INPUTThe A/D Input parameter (MP-87) displays the value of the analog input in percent offull scale (XXX.X%) before it is zero and spa
3 - 67Output MonitoringThese MPs monitor the MLP–Drive's outputs.MP-47 SPEED COMMAND OUTThe Drive Output (MP-47) Displays the drive output le
3 - 68Performance MonitoringPerformance Monitor Parameters monitor the performance of the MLP–Drive and yoursystem. Figure 3-2 is a block diagram of
3 - 69MP-44 DEVIATION (ERROR)Deviation (MP-44) displays the difference between the Ramped Reference (MP-46)and the Feedback Frequency (MP-43) measured
3 - 70Status MonitoringThese MPs monitor the status of the MLP–Drive's modes of operation and operatingstates.MP-50 ACTIVE SCALING MODEThe dig
3 - 71MP-52 ALARM STATUSThe digit that displays a number “1” is the active Alarm. In the example below, “HighSpeed Alarm ” is the active alarm.Lo
1 - 1IntroductionIntroducing the MLP-DriveExamples of MLP-Drive Applications
3 - 72MP-57 EEPROM STATUSThe Control Parameters are stored in the EEPROM memory chip. EEPROM Status(MP-57) displays the status of the EEPROM memory c
3 - 73SERIAL COMMUNICATIONSThe MLP-Drive can interface with a host computer through a RS485 SerialCommunications Interface. This interface allows the
3 - 74Using Serial CommunicationsThis section describes how to use the Serial Communications. Before you can applythis section, The MLP-Drive must be
3 - 75CP-72 CHARACTER FORMATThe MLP-Drive uses three different character formats. Enter the number for therequired format, as listed below.1 = 8
3 - 76Communications Software DesignThe MLP-Drive Serial Communications Interface uses a polling technique to establish alink with the host computer.
3 - 77Parameter SendUse the Parameter Send to change any of the MLP-Drive's Control Parameters.Table 3-51 Parameter Send - Host TransmissionCha
3 - 78Character 5, 6 - Parameter Number:These characters identify the Control Parameter that you want to change(i.e., “16” = CP-16).Characters 7 throu
3 - 79Character 12 - ETX:Always use the ASCII “ETX” character to terminate the character string.Example of Parameter Send:A new Acceleration Time of 5
3 - 80Table 3-52 Parameter Send - MLP-Drive ResponseCharacter # 1 2 3 4 5 6 7 8 9 10 11 12DEV # DEV # ERROR PAR # PAR # DATA DATA DATA DATA DATADESC
3 - 81Characters 5,6 - Parameter Number:The Control Parameter code is sent back to the host computer from the MLP-Drive.Characters 7 through 10 - DATA
3 - 82Control Command SendThe Control Command Send allows the host computer to control the operatingfunctions of the MLP-Drive that are associated wit
3 - 83Characters 5,6 - Parameter Number:These characters should always be “0”.Characters 7 through 8 - DATA:These characters should always be “0”.Char
3 - 84Table 3-54 Control Command Send - MLP-Drive ResponseCharacter # 1 2 3 4 5 6 7 8 9 10 11 12DEV # DEV # ERROR PAR # PAR # DATA DATA DATA DATA DA
3 - 85Characters 5,6 - Parameter Number:These characters will always be “0”.Characters 7 through 10 - DATA:These characters will always be “0”.Charact
3 - 86Data InquiryUse the Data Inquiry to request the current value for Parameters (i.e., ControlParameters or Monitor Parameters).Table 3-55 Data I
3 - 87Characters 5,6 - Parameter Number:This is the Control Parameter code (i.e., enter “16” for CP–16).Characters 7 through 10 - DATA:These character
3 - 88Table 3-56 Data Inquiry - MLP-Drive ResponseCharacter # 1 2 3 4 5 6 7 8 9 10 11 12DEV # DEV # ERROR PAR # PAR # DATA DATA DATA DATA DATADESC S
3 - 89Characters 5,6 - Parameter Number:The Control Parameter code is sent back to the host computer from the MLP-Drive.Characters 7 through 10 - DATA
3 - 90Table 3-57 ASCII to Binary@ 1000000 ' 1100000A 1000001 a 1100001B 1000010 b 1100010C 1000011 c 1100011D 1000100 d 1100100E 1000101 e
3 - 91Table 3-58 Binary to Monitor ParametersMP-50 MP-51 MP-52 MP-53 MP-54
1 - 3INTRODUCING THE MLP-DRIVEThe MLP-Drive is a highly accurate, digital, motor drive which can drive 1/4 to 2horsepower PM DC motors. It has advanc
3 - 92—NOTES—
4 - 1TroubleshootingDiagnosticsTroubleshootingPROM Chip Replacement
4 - 3DIAGNOSTICSThis section describes how to use the diagnostic routines to verify that the MLP-Drive isoperating properly as well as to identify any
4 - 4RAM Test #1 - To Test Random Access MemoryClear/4 will automatically default to RAM Test #1. The diagnosticindicator and the number “1” will be
4 - 5Display Test #2 - To Test the LED Display Panel SegmentsPress the “UP” or “DOWN” scroll keys until the diagnostic indicator andthe number “2” are
4 - 6Keypad Test #3 - To Test the KeypadPress the “UP” or “DOWN” scroll keys until the diagnostic indicator andthe number “3” are visible on the left
4 - 7Input Test #4 - To Test the Logic InputsPress the “UP” or “DOWN” scroll keys until the diagnostic indicator andthe number “4” are visible on the
4 - 8Output Test #5 - To Test the Logic OutputsPress the “UP” or “DOWN” scroll keys until the diagnostic indicator andthe number “5” are visible on th
4 - 9In addition to diagnostic tests 1-5, the MLP-Drive automatically performs two power updiagnostic routines during every Power Up.RAM TEST - Random
1 - 4EXAMPLES OF MLP-DRIVEAPPLICATIONSFigure 1-1 is an example of a Master mode of operation for a pump application. Thescaling format allows the ope
4 - 10—NOTES—
4 - 11TROUBLESHOOTINGThis section contains four troubleshooting flowcharts to help you resolve four possiblesystem operating problems. The four scena
4 - 12Figure 4-1 Motor Does Not Stop FlowchartYesMotor Does Not StopMP-53 =1000 (F–Stop)J5, Pin 4 isshorted to commonMP-53 =0100 (R–Stop)MP-53 =0010
4 - 13MP-50 =0010(Master)MP-50 =0100(Follower)MP-50 =0001(Direct)YesMotor Does Not RunProblem CorrectedYesYesNoNoNoNoSetpoint is correct ?NoYesMP-45 i
4 - 14Figure 4-3 Motor Runs at Wrong Speed FlowchartMP-50 =0010(Master)MP-50 =0100(Follower)MP-50 =0001(Direct)YesMotor Runs at Wrong SpeedProblem C
4 - 15Figure 4-4 Motor Runs Unstable FlowchartChange CP-61 to “1”and Run in Direct ModeNoMotor Runs UnstableMotor StillUnstable ?NoYesProblem Correc
4 - 16PROM CHIP REPLACEMENTThe PROM (Programmable Read Only Memory) chip is the software for the MLP-Drive.See Figure 4-5 for the PROM's location
4 - 17Figure 4-5 PROM LocationBeveled CornerInsert Tool HereInsert Tool Here
4 - 18—NOTES—
Glossary - 1Glossary
1 - 5Figure 1-2 is an example of the Follower mode of operation in a pump application. Thescaling format allows the operator to enter the setpoint as
Glossary - 2
Glossary - 3GLOSSARYAcceleration/Deceleration Acceleration Time (CP-16) and Deceleration Time (CP-17)control the rate of speed change in response to s
Glossary - 4the Follower mode, Offset Mode, Acceleration/Decelera-tion, Tuning, Alarms, and Jog. The MLP-Drive comesfactory pre-loaded with a complet
Glossary - 5Drive Enable The Drive Enable output is activated based on theRamped Reference (MP-46) and the feedback. TheRamped Reference is the calcu
Glossary - 6Input Monitoring Lead Frequency (MP-41)Feedback Frequency (MP-43)Logic Inputs, Group A (MP-54)Logic Inputs, Group B (MP-55)Input Test Test
Glossary - 7Master/FollowerScroll UpScroll DownMaster Mode A stand-alone control of a single motor. The scaling formatallows the operator to enter a
Glossary - 8Output Monitoring Drive Output (MP-47)Logic Outputs (MP-56)Output Test Tests the Logic Outputs.Outputs Drive OutDig_Out1Dig_Out2Parameters
Glossary - 9PPR Feedback See Appendix C; CP-31.PPR Lead See Appendix C; CP-30.Tuning Tuning stabilizes speed error differences between thesetpoint and
Glossary - 10Scroll Up/Down Keys These keys change the active setpoint value even if theactive setpoint is not displayed in the LED display.Each time
AppendicesAppendix A - MLP-Drive SpecificationsAppendix B - FormulasAppendix C - Parameter Summary -Numeric Quick ReferenceAppendix D - Control Parame
1 - 6—NOTES—
A-1APPENDIX A: MLP-DRIVE SPECIFICATIONSAccuracy: .01% Set SpeedResponse: 10 millisecond control loop updateTuning: Separately adjustable Gain, Integr
A-2Analog Input: 0 - 10 VDC Range33 KΩ Input Impedance12 Bit Resolution± 0.1% Linearity Error - Typical± 0.05% Drift Error - Typical - Isolated Mode±
A-3Faceplate Rating: Nema 4, 4X, 12, 13IP65Environment: The MLP-Drive shall be installed in a pollutiondegree 2 macro - environment.Altitude: To 3,30
A-4–NOTES–
B - 1APPENDIX B: FORMULASUse the following formulas to calculate Speed Control:MASTER MODEGeneralHZRPMSetpointMaster = RPMFeedbackE.U.Master
B - 2HZOFFSET MODESetpointFollower X (HZLead)(RPMMax Fb)(PPRFb)E.U.Follower (RPMMax Lead)(PPR Lead )(CP-31)(CP-30)(CP-3,4)(CP-33)(CP
C - 1APPENDIX C: PARAMETER SUMMARY -NUMERIC QUICK REFERENCECP-01 MASTER SETPOINT 1The Engineering Units value that you want your system to operate at
C - 2CP-06 DIRECT SETPOINTUse the Direct Setpoint (CP-06) to set the drive output that is used when the MLP–Drive is in theDirect Mode of operation.
C - 3CP-11 ALARM 2 FORMATBy entering alarm Control Parameters, you can establish circumstances under which theMLP–Drive will alert you to potential op
2 - 1Installation / SetupMountingWiringInputsOutputsSerial CommunicationsCalibrationCurrent LimitAnalog Input Calibration
C - 4CP-16 ACCELERATION TIMEAcceleration Time (CP-16) controls the rate of speed change in response to setpoint changes.This Control Parameter applies
C - 5CP-29 RECOVERY MULTIPLIERThe Recovery Multiplier determines the rate at which the pulse error (position) is reduced tozero. This parameter multip
C - 6MP-41 LEAD FREQUENCYThe Lead Frequency (MP-41) displays the frequency of the Lead Frequency Input(J5 pin 1) in units of hertz (pulses per sec
C - 7MP-44 DEVIATION (ERROR)Deviation (MP-44) displays the difference between the Ramped Reference (MP-46) and theFeedback Frequency (MP-43) measured
C - 8MP-50 ACTIVE SCALING MODEActive Scaling Mode (MP-50) displays a number “1” to indicate the active scaling mode. In theexample below, “Master Mod
C - 9MP-52 ALARM STATUSAlarm Status (MP-52 ) displays a number “1” to indicate the active alarm. In the example below,“High Speed Alarm ” is the act
C - 10MP-54 LOGIC INPUTS - GROUP AThe Logic Inputs - Group A (MP-54) displays the status of the Run, Jog, R–Stop and F–Stoplogic inputs. The number “
C - 11MP-56 LOGIC OUTPUTSThe Logic Outputs (MP-56) displays the status of the Dig_Out1 and Dig_Out2 logic outputs. Thenumber “1” indicates an inactiv
C - 12MP-59 FREQUENCY OVER FLOW COUNTERThe Frequency Over Flow Counter (MP-59) is a counter that increments each time the frequencyinput to the MLP–Dr
C - 13CP-64 DISPLAY MODE FOLLOWERIn the Follower mode of operation, Display Mode Follower (CP-64) determines how the data willdisplay in Tach (CP-40).
2 - 23.60"3.60"4.00"*6.00"4.00"DOOR PANEL(3.65" .03" CUTOUT( CUTOUT3.65" .03" ()* From the rear of
C - 14CP-69 TRIM AUTHORITYTrim Authority determines how much influence the PID term has on the control output. If stabilitycannot be obtained through
C - 15CP-73 CONTROL MASKThe Serial Communications can control some of the logic input functions. Enter the number forthe required functions in Contro
C - 16CP-79 SETPOINT LOCKOUT MASKSetpoint Lockout Mask determines which setpoints are disabled when the keypad is locked out.If CP-79 is set to "
C - 17 Current LimitMin LimitMax LimitNot UsedCodeCP-84 ANALOG INPUT ALLOCATIONCP-84 allocates the analog input to the desired
C - 18MP-88 A/D INPUT ADJUSTEDMP-88 displays the value of the analog input in percent of full scale (XXX.X%) after it is zero andspan adjusted. The A/
D - 1APPENDIX D: CONTROL PARAMETERREFERENCEUSERCODE DESCRIPTION MIN MAX DEFAULT RECORD UNITSCP-01 Master Setpoint 1 0000 9999 0000 ENGCP-02 Master Se
D - 2USERCODE DESCRIPTION MIN MAX DEFAULT RECORD UNITSCP-67 Derivative 0 9999 9000 —CP-68 Feedforward 500 2000 1000 DAC bitCP-69 Trim Authority 0 100
E - 1APPENDIX E: MONITOR PARAMETERREFERENCECODE DESCRIPTION MIN MAX UNITSMP-40 Tach 0 9999 ENG.MP-41 Lead Frequency 0 9999 HZMP-42 Pulse Error Count
E- 2—NOTES—
F - 1APPENDIX F: MLP–DRIVE FAX COVER SHEETDate: ______________________Atten: Contrex Technical SupportFax Number: 1-763-424-8734From:Name __________
2 - 3MOUNTINGThis section contains instructions for mounting the MLP–Drive in the door panel of aNEMA Industrial Electrical enclosure. The MLP–Drive
F - 2Code# Description DisplayedCode# Description DisplayedCode# Description UserRecordCode# Description UserRecordPlease record the Control Para
G- 1APPENDIX G: WIRING DIAGRAMEXAMPLESDANGERThis diagram is for conceptual purposes only!Use safety equipment.Make wiring connections carefully.Incor
G - 2DANGERThis diagram is for conceptual purposes only!Use safety equipment.Make wiring connections carefully.Incorrect use of equipment or connectio
G- 3Figure G-3 Start/Stop with Armature ContactorDANGERThis diagram is for conceptual purposes only!Use safety equipment.Make wiring connections care
G - 4DANGERThis diagram is for conceptual purposes only!Use safety equipment.Make wiring connections carefully.Incorrect use of equipment or connectio
C --- ---04/13 Update Page 2-5 for Motor Over-temp compliance
H - 2—NOTES—
Warranty - 1WarrantyService PolicyWarranty
Warranty - 2
Warranty - 3SERVICE POLICYContrex, Inc., recognizes that with each saleof its product there are certain productobligations. This document defines th
iiTechnical AssistanceIf you have comments or questions concerning the operation of the MLP-Drive, please call. A member of our Technical Support Staf
2 - 4* Use 115 VAC with MLP-Drive model # 3200-1938 Use 230 VAC with MLP-Drive model # 3200-1939L1* Neut or L2GND/PERS485 SerialCommunicationsLEAD
Warranty - 4WARRANTYContrex, Inc., guarantees this device againstdefects in workmanship and materials for aperiod of one (1) year from the date ofpurc
Index - 1Index
Index - 2
Index - 3IndexAAC Power Input..page 2-8Acceleration Time..page C-4, D-1Acceleration/Deceleration..page 3-47, Glossary-3Active Scaling Mode..page 3-70,
Index - 4Definition..page Glossary-3MLP–Drive..page 2-20, 2-22Character Format..page 3-75, C-14, D-2Clear/4..page 4-3Clear/7..page 4-11Closed Loop..pa
Index - 5CP-67..page 3-48, C-13, D-2CP-68..page 3-48, C-13, D-2CP-69..page 3-48, C-13, D-2CP-70..page 3-74, C-14, D-2CP-71..page 3-74, C-14, D-2CP-72.
Index - 6Drive Enable..page Glossary-5Logic..page C-15, D-2Drive Output..page 3-67, C-7Output..page 2-15EEEPROM..page Glossary-5EEPROM Status..page 3-
Index - 7Use the Up/Down Scroll Keys..page 3-4II/O Power..page 2-7InputMonitoring..page 3-64, Glossary-6Test..page 4-7, Glossary-6Inputs..page Glossar
Index - 8KKeypadBasic Entry..page 3-4Error..page 3-70, C-8, E-1Lockout..page 3-5, C-18, D-2Mask..page 3-5Record of your Password..page 3-6Operation..p
Index - 9Introducing the..page 1-3Mounting.See Mounting the MLP–DriveOperation.See OperationMode of Operation..page Glossary-7Monitor Parameter Refere
WIRINGWARNINGCan cause severe injury, death, or damage to equipment.Hazardous voltages!The MLP-Drive should only be installed by a qualified electrici
Index - 10Open Loop..page 1-3, Glossary-7Open/Closed LoopInput..page 2-13Operating State..page Glossary-7Operating StatesF-Stop..page 3-58Jog..page 3-
Index - 11PParameter..page 3-7, Glossary-8Code..page 3-7, 3-63, Glossary-8Send..page 3-77, Glossary-8Summary Reference List..page C-1Value..page 3-7,
Index - 12Data Inquiry..page 3-86Error..page 3-75, C-11, E-1Multidrop Installation..page 2-17Parameter Send..page 3-77Service Policy..page Warranty -
Index - 13Connections without Relays..page G-1General Diagram..page 2-4Inputs..page 2-7Outputs..page 2-15Start/Stop for Regen with Armature..page G-3T
Index - 14—NOTES—
2 - 6–NOTES—
2 - 7Figure 2-3 I/O Power / IsolatedFigure 2-4 I/O Power / Non-IsolatedINPUTSNOTE: The installation of this motor control must conform to area an
2 - 8AC Power (J3 pins 3, 4, 5)The MLP–Drive model #3200-1938operates on 115 VAC + 15%, 0.1Amp., 50/60 Hz. The MLP–Drivemodel #3200-1939 operates on
2 - 9Feedback Frequency(J5 pins 2, 3)The Feedback Frequency is a pulsetrain input that the MLP–Drive uses todetermine the speed of the followermotor.
2 - 10Jog (J5 pins 5, 8)Jog is a maintained input. When Jogis closed, the MLP–Drive commandsthe motor to move at the selected jogspeed. As a maintai
2 - 11Figure 2-11 F–StopF-Stop (J5 pins 7, 8)F-Stop is a momentary input. Whenit is open, the MLP–Drive stopsimmediately (zero RPM) and ignoresthe
2 - 12Figure 2-13 Setpoint SelectSetpoint Select (J5 pins 10, 13)The Master and Follower setpointsare determined by the Setpoint Selectinput combine
2 - 131113J5SCROLL UPFigure 2-15 Scroll Down1213J5SCROLL DOWNThe Scroll Down input decrements the active setpoint. The active setpoint will bedecrem
iiiDANGERImproper installation cancause severe injury, death ordamage to your system.Integrate this motion controlunit into your system withcaution.Op
2 - 14Analog Input (J5 pins 18, 19)The Analog Input can be used forfrequency or setpoint replacement inthe Master and Follower modes ofoperation, or t
2 - 15OUTPUTSDrive Output (J3 pins 1, 2)Connect the Drive Output(J3 pins 1, 2) to the armature leads(A1 and A2) of your permanentmagnet, DC motor. If
2 - 16Digital Output 2 (J5 pin 16,17)The Digital Output 2 can be programmed to activate as a function of various alarmconditions or as a function of
2 - 17Figure 2-19 MLP–Drive Multidrop InstallationSERIAL COMMUNICATIONSNOTE: The installation of this motor control must conform to area and local e
2 - 18Figure 2-20 MLP–Drive Serial Communications Connections1. Shield only at one end of the cable.2. If you need to terminate the communication li
2 - 19CALIBRATIONCalibration sets the MLP-Drive's current limit. Calibration also zero and spans theanalog input. The MLP–Drive must be properly
2 - 20CURRENT LIMITThe MLP-Drive provides current limiting for both RMS continuous duty and RMS peakintermittent duty. The RMS current limit level is
2 - 21Use Limit Status (MP-83) to display the present status of the current limit:Press “Code Select”Enter “83” (Limit Status)Press “Enter”The presen
2 - 22ANALOG INPUT CALIBRATIONThe analog input is factory calibrated for zero and span levels at 0 - 10 VDC. If it isnecessary to field calibrate the
3 - 1OperationKeypad OperationKeypad LockoutControl Parameters (CP)Direct ModeMaster ModeFollower ModeOffset ModeInverse Master ModeInverse Follower M
3 - 2
3 - 3KEYPAD OPERATIONThe front panel of the MLP–Drive is an easy to use keypad that gives you directaccess to the Parameters (Control Parameters and M
3 - 4NumericKeysLedDisplayDedicated KeysUp/DownScroll KeysCode Select KeyParameter Code (2 digits)Parameter Value(up to 4 digits)EnterKeyClearKeyFigur
3 - 5KEYPAD LOCKOUTKeypad Lockout (CP-98) displays the present status of the keypad lockout. When thekeypad is locked, then “LOC” is displayed:Locked
3 - 6CAUTION:Make certain that you record your password in the space provided on page 3-6, as yourpassword becomes transparent once you have entered i
3 - 7CONTROL PARAMETERSParameters are divided into two classifications; Control Parameters (CP) and MonitorParameters (MP). The numbered code that re
3 - 8Direct ModeIn the Direct mode of operation, the drive output from the MLP–Drive to the motor drivecan be set directly. Direct mode is an open-lo
3 - 9Master ModeThe Master, or stand-alone mode of operation, is a single motor operation. In thissimple mode of operation, the entire process is con
3 - 10Table 3-4 Default Master Scaling Control ParametersCP Parameter Name Parameter ValueCP-34 Max RPM Feedback 2000CP-31 PPR Feedback 60CP-20 Mas
3 - 11Table 3-6 Entering Master Setpoint Control ParametersCP Parameter Name Parameter ValueCP-01 Master Setpoint 1 CP-02 Master Setpoint 2Enter the
vTable of ContentsIntroduction... 1-1Introducing the MLP-Drive ...
3 - 12Master Mode ExampleThe following example demonstrates how scaling and setpoint Control Parameters areentered for a typical Master mode of operat
3 - 13Master Mode - Analog FeedbackThe MLP-Drive can be scaled for Engineering Unit setpoint entry and Tach displayoperation using the analog input fo
3 - 14Table 3-9 Entering Master Scaling Analog Feedback ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-20 Master Engine
3 - 15Master Mode Analog Feedback ExampleThe following example demonstrates Master mode scaling using analog feedback:A pump delivers 20.0 gallons per
3 - 16Master Mode - Analog SetpointThe MLP-Drive can be scaled for Engineering Unit setpoint entry and Tach displayoperation using the analog input fo
3 - 17Table 3-12 Entering Master Scaling Analog Setpoint ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-20 Master Engi
3 - 18Master Mode Analog Setpoint ExampleThe following example demonstrates Master mode scaling using analog setpoint:A pump delivers 20.0 gallons per
3 - 19Follower ModeThe Follower mode of operation is the most frequently used mode of operation. It is amulti-motor operation in which the entire pro
3 - 20The factory default Control Parameters for Scaling are found on Table 3-14. To modifythese default parameters, refer to Table 3-15. If you are
3 - 21With your scaling established, you can enter values for Follower Setpoints 1 and 2(CP-03, CP-04). The value that you enter for a setpoint is t
viMonitor Parameters ... 3-63Input Monitoring ...
3 - 22Follower Mode Examples A and BExample A demonstrates how scaling and setpoint Control Parameters are entered fora typical Follower mode of opera
3 - 23To find Follower Setpoint 1 (CP-03) for Example A:Follower E.U. desired 15Setpoint 1 =________________________________=___=3Lead E.U. operatio
3 - 24Table 3-17 Follower Mode Control Parameters Example ACP Parameter Name Parameter ValueCP-33 Max RPM Lead 1725CP-34 Max RPM Feedback 1800CP-30 P
3 - 25Example B demonstrates how scaling and setpoint Control Parameters are entered fora typical Follower mode of operation that uses a setpoint base
3 - 26To find Follower Setpoint 1 (CP-03) for Example B:Follower E.U. desiredSetpoint 1 =________________________________x 100 (%)Lead E.U. operatio
3 - 27Table 3-18 Follower Mode Control Parameters Example BCP Parameter Name Parameter ValueCP-33 Max RPM Lead 1800CP-34 Max RPM Feedback 1800CP-30 P
3 - 28Follower Mode - Analog LeadThe MLP-Drive can be scaled for Engineering Unit setpoint entry and Tach displayoperation using the analog input for
3 - 29Table 3-20 Entering Follower Scaling Analog Lead ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-21 Follower Engi
3 - 30Follower Mode Analog Lead ExampleThe following example demonstrates Follower mode scaling using analog lead:A pump delivers 20.0 gallons per min
3 - 31Follower Mode - Analog FeedbackThe MLP-Drive can be scaled for Engineering Unit setpoint entry and Tach displayoperation using the analog input
viiList of IllustrationsFigure 1-1 MLP–Drive Master Mode ... 1-4Figure 1-2 MLP–Drive Follower Mo
3 - 32Table 3-23 Entering Follower Scaling Analog Feedback ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-21 Follower
3 - 33Follower Mode Analog Feedback ExampleThe following example demonstrates Follower mode scaling using analog feedback:A pump delivers 20.0 gallons
3 - 34Follower Mode - Analog SetpointThe MLP-Drive can be scaled for Engineering Unit setpoint entry and Tach displayoperation using the analog input
3 - 35Table 3-25 Default Scaling Control ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation 0CP-21 Follower Engineering Units
3 - 36Table 3-26 Entering Follower Scaling Analog Setpoint ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-21 Follower
3 - 37Follower Mode Analog Setpoint ExampleThe following example demonstrates Follower mode scaling using analog setpoint:A pump delivers 20.0 gallons
3 - 38Offset ModeOffset mode is a variation of Follower mode. In Offset mode, an additional quantity(offset term) is added to or subtracted from the s
3 - 39Offset Authority (CP-76)Offset Authority determines the quantity of the offset term (amount ofinfluence) for a given analog input level.Offset P
3 - 40Table-29 Entering Offset Scaling Analog Setpoint ParametersCP Parameter Name Parameter ValueCP-84 Analog Input Allocation CP-21 Follower Engi
3 - 41Offset Mode Analog Setpoint ExampleThe following example demonstrates Offset mode scaling using analog setpoint:The lead nip motor on a web has
viiiList of TablesTable 3-1 Basic Keypad Entry ... 3-4Table 3-2 Default Direct Mode Cont
3 - 42Table 3-30 Offset Mode ExampleCP Parameter Name Value RemarksCP-84 Analog Input AllocationCP-21 FollowerEngine
3 - 43Inverse Master ModeThe Inverse Master Mode is a variation of the Master Mode. The Inverse Master Modehas an inverted setpoint. If you increase
3 - 44Inverse Master Mode ExampleThe Inverse Master Mode Example demonstrates how scaling and setpoint ControlParameters are entered for a typical Inv
3 - 45Inverse Follower ModeThe Inverse Follower Mode is a variation of the Follower Mode. The Inverse FollowerMode has an inverted setpoint. If you
3 - 46Inverse Follower Mode ExampleThe Inverse Follower Mode Example demonstrates how the scaling and setpointControl Parameters are entered for a typ
3 - 47Acceleration/DecelerationAcceleration/Deceleration (CP-16 and CP-17) control the rate of speed change inresponse to setpoint changes. These par
3 - 48TuningIf your system is unstable, or the speed error is unacceptable, tuning stabilizes speederror differences between the setpoint and feedback
3 - 49Table 3-40 Entering Master / Follower Tuning Control ParametersCP Parameter Name Parameter ValueCP-65 Gain (Proportional)CP-66 IntegralCP-67 De
3 - 50Zero Error LoopThe MLP-Drive has the ability to eliminate any long term speed error in the followermode. This is equivalent to maintaining a fol
3 - 51Table 3-42 Entering Zero Error Loop Control ParametersCP Parameter Name Parameter ValueCP-18 Lag Pulse LimitCP-19 Lead Pulse LimitCP-29 Recov
ixTable 3-36 Inverse Follower Mode Control Parameters Example... 3-46Table 3-37 Default Master or Follower Accel/Decel Control Parameters 3-4
3 - 52AlarmsThe Control Parameters for Alarms are identical for both the Master and the Followermodes of operations. By entering values in the Contro
3 - 53Table 3-44 Entering Alarms Control ParametersCP Parameter Name Parameter ValueEnter the RPMs at or below which you want the alarm output to act
3 - 54LimitsThe MLP-Drive has the ablity to limit both the minimum and maximum operating speedwhen in the Run state.The following control parameters a
3 - 55JogJog increases the RPMs at the acceleration rate that you specified in Acceleration Time(CP-16) until the Jog Setpoint (CP-05) is achieved. W
3 - 56—NOTES—
3 - 57LOGIC CONTROLThis section addresses the four digital inputs and two digital outputs that control theMLP–Drive's and connected drive's
3 - 58Logic InputsF–Stop has priority over the other operating states. F–Stop brings the MLP–Drive'sdrive output to an immediate Zero.To activat
3 - 59Run has the third highest operating priority. Run ramps to the scaled setpoint speed,using the Acceleration Time (CP-16). Run can be activated
3 - 60Jog has the least operating priority. Jog ramps to the Jog Setpoint (CP-05), using theAcceleration Time (CP-16). When Jog is terminated, the M
3 - 61Logic OutputsDrive Enable activates based on the Ramped Reference (MP-46) and the feedback.The Ramped Reference (MP-46) is the calculated setpoi
Kommentare zu diesen Handbüchern